
Naval Medical Research Institute
8901 Wisconsin Avenue
Bethesda, MD 20889-5607 NMRI 95-62 October 1995

MODIFICATION OF CANBERRA'S ACCUSPEC RADIATION

DATA COLLECTION PROGRAM TO PRODUCE

SPREADSHEET-FORMAT OUTPUT FILES

D. R. Laws
P. Karnik
D. R. LaCaze
J. A. Novotny

Naval Medical Research
and Development Command
Bethesda, Maryland 20889-5606

Department of the Navy
Naval Medical Command
Washington, DC 20372-5210

19951214 106

Approved for public release;
distribution is unlimited

NOTICES

The opinions and assertions contained herein are the private ones of the writer and are not to be
construed as official or reflecting the views of the naval service at large.

When U. S. Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished or in any way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Naval Medical Research Institute. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station

Alexandria, Virginia 22304-6145

TECHNICAL REVIEW AND APPROVAL

NMRI 95-62

The experiments reported herein were conducted according to the principles set forth in the current
edition of the "Guide for the Care and Use of Laboratory Animals," Institute of Laboratory Animal
Resources, National Research Council.

This technical report has been reviewed by the NMRI scientific and public affairs staff and is
approved for publication. It is releasable to the National Technical Information Service where it
will be available to the general public, including foreign nations.

THOMAS J. CONTRERAS
CAPT, MSC, USN
Commanding Officer
Naval Medical Research Institute

REPORT DOCUMENTATION PAGE
form Approved

OMB No. 07Ot-01S8

tC°K10" O« m«o»rrj;^-. «(»<•>< ^«Tlt-on» lo« >«!ixi«0 t*« D»«t«. »O «Vi.rv^vflO" •«KClKO VfvK«. t>««tOt*\< «Of •n«on»»l'On Opt««««x>» »<xl Ktiom. >JU jiff^vy,

1. AGENCY USE ONLY ft.«v* bUnk) 2. REPORT DATE

1995

3. REPORT TYPE AND DATES COVERED

Technical Report

Z. TITLE AND SUSTiTLE

Modification of Canberra's accuspec radiation data collection program
to produce spreadsheet-format.output files

6. AUTHOR(S)

Laws DR; Karnik P; LaCaze DR; Novotny JA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Medical Research Institute
Commanding Officer
8901 Wisconsin Avenue
Bethesda, Marvlanc 208S9-5607

9. SPONSORING/MONITORJNG AGENCY HAME(S) AND ADDRESS(ES)

Naval Medical Research and Development Command
National Naval Medical Center
Building 1, To-.*er 12
8901 Wisconsin Avenue
Bethesda, Mary-land 20889-5606

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (r^^zirnum 2C-0 words)

i V?Äy ■' ■' ' y»'i

!3| DEC 1 8 1995 | K:;f

F J
ijiu^-^ijM^BaiMJiMW! i mm i in» ii «irren ^.twrmii i n i JII an TwnrMwnria

S. FUNDING NUMBERS

PE-62233N.
PR-MM33P30
TA -00*
WU-1050

8. PERFORMING ORGANIZATION
REPORT NUMBER

NMRI 95-62

10. SPONSORING/MONITORING
AGENCY REPORT NUMSER

DN2*9500

12b. OISTRI6UTION CODE

U. SUBJECT TERMS

information systems, automated data collection, computer software modification

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES -

16. PRICE CODE

20. LIMITATION OF ASSTRACT

Unlimited

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-01B8

1. A6ENCY USE ONLY (Leave blank) 2. REPORT DATE
October 1995

3. REPORT TYPE AND DATES COVERED
Technical Oct 90 - Dec 91

A. TITLE AND SUBTITLE
Modification of Canberra's Accuspec radiation data
collection program to produce spreadsheet-format output
files*

6. AUTHOR(S)

Laws, D.R., P. Karnik, D.R. LaCaze, and J.A. Novotny

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Medical Research Institute
Commanding Officer
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5607

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Medical Research and Development Command
National Naval Medical Center
Building 1, Tower 12
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5606

5. FUNDING NUMBERS

PE - 62233N
PR - MM33P30
TA- .004
WU -1050

PERFORMING ORGANIZATION
REPORT NUMBER

NMRI 95-62

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DN2495O0

11. SUPPLEMENTARY NOTES

128. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wortii)

This manuscript describes a modification of Canberra's Accuspec radiation data
acquisition program to produce a compact, ASCII-format, concatenated output file with real-
time display of data to a remote video terminal. This modification was driven by the needs
of an experiment requiring the collection of data from several channels of input over many
cycles, followed by statistical analysis and graphical display. These requirements were
satisfied entirely within the framework of the AccuSpec Autosequence function: Only 2 of
the 60 original source code files required modification and one C-language file was added to
accomplish the necessary time-stamp recording, binary-to-ASCII conversion, data merging,
concatenation, and display operations. The cycle reset time was 8 seconds. The modified
program produces a single file, which is smaller by a factor of 1/375th than the storage
volume required for the original program's several hundred output files.

1«. SUBJECT TERMS
information systems, automated data collection, computer
software modification

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 754O-O1-260-5SO0

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
22

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited
S:2noa'd Form 298 (Rev 2-E9)
"•-«•two P> i*V i'S 23S-6

TABLE OF CONTENTS

page

Acknowledgements ii

Introduction . 1

Methods 2

Hardware 2
Autosequence 2
Setup 3
Acquisition 3
Source code details 4

Modification #1: original file UTIL.C 4
Modification #2: original file MENU.C 5
Modification #3: created file NUPRINT.C 8

Discussion 8

Summary 9

References 9

Figure 1: AccuSpec Autosequence Code Summary with Modification in right margin 19

LIST OF APPENDICES

Appendix A: Autosequence

Appendix B: NUPRINT.C .

12

15

Aecesion For

NTiS CP/V;

Unannou/'icec

iSä*-

ACKNOWLEDGEMENTS

This work was supported by NMRDC Work Unit No. 62233N MM33P30.004-1050.

The opinions expressed in this paper are those of the authors and do not reflect the official

policy or position of the Department of Navy, Department of Defense, or the U.S.

Government.

The authors thank Susan Mannix for expert editorial assistance.

I
n

INTRODUCTION

Scientific experiments and industrial procedures often require the cyclical acquisition

of radiation data from any number of sources, and then storage or display of the data in a

compact, easily managed format (1,2). One popular radiation data acquisition system is the

Accuspec by Canberra. This system provides a means of performing cyclical data acquisition

through its Autosequence feature, which is a high-level language for automated execution of

Accuspec commands. One limitation, however, is that the system in its off-the-shelf form

does not provide the means for merging or concatenating the collected data. Instead, for each

cycle and every channel of input, the system produces one binary-format file, fixed at 5.1

kilobytes (kb) in size. For an experiment lasting, for example, 1 h with 5 channels collecting

at a rate of 1 cycle/min, the Accuspec would produce 300 files requiring 1.5 megabytes (Mb)

of storage space. Because many applications last several hours or even days, and may require

more frequent acquisition, such high-volume output places a considerable burden on data

storage capabilities. Also, organizing the data into a format suitable for display, mathematical

manipulation, or analysis by other computer programs requires a number of file operations not

available in the Accuspec system.

This manuscript describes a modification of the Accuspec program, which gives a

compact, ASCII-format, concatenated output file containing the time-stamp and the data

collected over many cycles from several channels of input. The requirements of the

experimental work being performed in our laboratory will serve to illustrate a specific

scenario for modification. However, the method employed by us was general enough to be

readily adapted to a variety of requirements.

1

Our experiments, which form part of a radioactive gas kinetics physiology project (1),

require the cyclical collection of radioactivity data from up to 5 scintillation detectors at a

time. The radioactivity data is then analyzed with a nonlinear regression computer program,

which requires as input a single ASCII file with one column for the time data and the

remaining columns for the radioactivity data. We were able to achieve our goal of a single

ASCII file entirely within the framework of the AccuSpec Autosequence by modifying only 2

of the 60 Accuspec source code files and adding 1 C-language file of our own to perform the

necessary time-stamp recording, binary-to-ASCII conversion, data merging, concatenation, and

other file operations.

METHODS

Hardware

Our hardware environment consisted of a Dell System 310 desktop computer (20

Mhz/386) with 4 Mb of RAM, a Canberra Accuspec A board containing the ADC, and a

Western Digital, WD8003E Ethernet card. The external data collection equipment included a

Canberra ND589 Analog Multiplexer (8 kb memory) capable of accepting up to 8 channels of

input. The system was operated in the pulse-height analysis mode (PHA). Our remote video

display was a DEC VT-100 terminal.

A utosequence

The Autosequence forming the framework of our data collection routine is shown in

Appendix A and the functions performed by it are summarized in Fig. 1. Its operation is

described in the following paragraphs.

Setup

The Autosequence begins by requesting user-supplied input (lines 9-16) for the desired

counting time per cycle and the total number of cycles to execute. Then, the commands

preparing each detector in the system for collection (lines 20-48) are executed to configure

the system memory for the desired portions of the detected radioactivity spectrum and the

cycle time b. The loop counter is set to 0, the loop limit is set to the desired number of

cycles, and the system is prepared for video display (lines 50-57). With these setup tasks

completed, the cyclical portion of the autosequence (lines 20-51) commences upon user

command (line 53).

A cquisition

Once the required setup is in place, to begin the collection loop (lines 59-77), the

system prepares the first detector to collect according to preset configuration files (line 59),

clears the system memory (line 60), and then begins collecting data (line 61). This operation

repeats in succession for the remaining detectors (lines 63-77) at a rate of approximately once

every half-second.

The waiAadc command (line 79) suspends the autosequence during data acquisition

until some preset condition is met, which in our case is the preset cycle time. The

autosequence then executes the data transfer commands (lines 81-94), followed by a command

for the required file operations (line 97). These segments of the Autosequence contain the 3

required modifications, described below.

Source code details

Modification #1: original file UTIL.C

The first of the required modifications involved the UTIL.C file. The added

utihprint\ntotals command opens a file for each detector and writes the data to disk. This is a

modification of the original command util\print\totals. The files produced by the original

command are in binary format and include a large volume of header information (date/time,

group number, sample identification, configuration data, calibration information, measurement

units, input device, in addition to the collected data), which is not required for our

application. Although the Accuspec program provides a variety of utility commands, such as

lotcnv, which performs binary-to-ASCII conversion, other problems persist. Most notably, the

header information and numerous data files - in the context of several hundred output files -

pose considerable file reduction and concatenation problems in addition to the mentioned

storage problems. Performing all of these operations in real-time would add an unacceptable

level of inefficiency and delay. Additional to these storage and format problems, the

Accuspec system does not provide a path for real-time display of information to a remote

video terminal, short of suspending the Autosequence for the execution of an external DOS

command of some sort.

Our first task was to find a way to eliminate the unwanted header information from

the initial data files. The source code file UTIL.C contains the functions utilized by the util

command set. Only two of these functions required modification. In keeping with our

philosophy of preserving the original workings of the program, we added two functions

containing our code to this file instead of modifying the existing ones. Specifically, the

UTIL.C code was altered to produce a file with reduced header information along with the

elapsed live-time and collected data for each detector. The choice of which header

information to preserve is arbitrary, as none of it is used in our final output file; however, we

wished to preserve a semblance of the format used in the Accuspec program.

Modification #2: original file MENU.C

The second modification involved the MENU.C file, which controls the available

menu commands. We modified it to enable the recognition of the added util command

ntotals. The Accuspec system executes the commands given by the Autosequence by

recognizing the first letter or "hot key" of the command. For example, the hot key T of the

original program corresponds to the totals command. So to call the new command ntotals

we added the hot key N to MENU.C, leaving the original program unchanged. The modified

MENU.C file produced a modified user-interactive menu displayed at the bottom of the

screen

Data Regions Status Totals Keys Screen Ntotals

instead of the original menu

Data Regions Status Totals Keys Screen

To execute the ntotals menu option, we added the function uti_pri_totnew to MENU.C. This

produces the following description of the function in quotation marks at the bottom of the

screen when N is selected. The C-language code for this:

uti_pri_totnew_des = {"Prints totals data as ASCII text file "}

The uti_pri_totnew function finishes executing the command by calling the functions

mf_print_ntotals and print_date_header to produce the desired ASCII output file. We named

these two functions using the same conventions as the originals mf_print_totals and

print_data_header.

Modification #3: created file NUPRINT.C

File operations

With the collected data in ASCII format for each channel, we needed a means for

merging the data and concatenating through successive cycles. To do this, we utilized an

existing menu option, utihrun, which enables the execution of a DOS command during

Autosequence operation. Our name for the new executable command, NUPRINT (code

shown in Appendix B), is displayed in quotation marks with its required argument variables

as letters on line 97 of the Autosequence.

NUPRINT opens each data file created by the utibprint\ntotals commands, writes the

information to memory, closes the file (lines 39-49 for detector #1), and then performs any

desired operations on the collected data. In our case, this involves calculating counts-per-

minute (cpm) in each roi from the summed counts and the elapsed cycle live-time (line 50).

This happens sequentially within NUPRINT for every channel of input. The DOS time is

retrieved and converted to seconds-from-midnight, an arbitrary choice (line 119). The

arguments passed from the Autosequence to NUPRINT enable the user to specify any

required variables for data processing before writing to file (lines 120-121). The final file

operation is to open, append, and write the time and cpm data to the output file, which is

closed before control is returned to the Accuspec system (lines 122-128).

Data display

One additional feature required for our application was to display the output data to a

remote video terminal to enable real-time feedback during the experiments. This was

accomplished by temporarily storing the output data of the current cycle in a write-only file

and then making a DOS system call to copy this file to the COM1 port (line 145). The result

is a cyclically updated display of the ongoing data collection process.

Return to Autosequence

Once the file and display operations are completed, control is returned to the Accuspec

program and the Autosequence. The data acquisition then continues until a preset number of

cycles is reached (Autosequence line 100), at which time the Autosequence jumps out of the

loop and notifies the user that acquisition is complete. A portion of a sample output file is

shown below.

Cycle# time roill, roil2,
(seconds) (cpm...

1, 65087, 501., 720.,
2, 65160, 511., 740.,
3, 65235, 521., 750.,

...

roiSl, roi52
...)

605., 308.,
625., 338.,
645., 368.,

Included are cycle number, time in seconds (from midnight), and partial data for 5 detectors

and 2 rois per detector, respectively.

DISCUSSION

The modification of the Accuspec radiation data acquisition system described here is

similar to an increasing number of similar modifications being made with other commercial

software programs (3-6). The modification presented here enables data collection with a

cycle reset time of only 8 s compared, for example, with the 22-second reset time of

Canberra's earlier 35-PLUS system operating with a DEC PDP-1134 mainframe computer.

The output file produced by the modified program for a 10-hour experiment producing 3,000

rows of data is about 40 kb versus the 15-megabyte output of the original program for the

same task. So the modified program uses storage memory at a rate l/375th of the original.

The modified program will accommodate a variety of conceivable applications. The

NUPRINT program is just one example of several possibilities created to satisfy our particular

requirements.

Although the final form of the modified program required only few and relatively

simple modifications, the decisions by which we arrived at this particular version are worth

considering in more detail. For the data manipulation and file operations, other means are

available among the Accuspec commands for performing some of the required steps. For

example, some of the data transfer functions performed by move\data could have been

modified in the MOVEDATA.C file to include merging and concatenating operations. The

TIME.C file, called by other Accuspec commands to provide DOS time, is not available

directly as a user-accessed command, and therefore would have required modification. Thus,

all of the.alternatives that we could identify for accomplishing our goal would have entailed

extensive changes to the original program. The MENU.C code would also have required

numerous changes in order to add several new commands, and would have generated a menu

display altered considerably from the original. By contrast, our modifications produced just

one additional menu item while leaving the remainder of the program unchanged.

We encountered some difficulties routing the required data to a remote video display.

Our initial attempts involved transmitting the data via the Dell system communication port

COM1. However, by mapping the memory addresses of the program, the Accuspec board,

and the Dell COM1 port using Check-It (Touchstone), we found several memory address

conflicts between the Accuspec and the host system, which cause the Dell COM1 port to be

unavailable in Dell system as delivered. Specifically, in the presence of the Accuspec A

board, IRQ#3 (Interrupt Request, a function of the PC-BIOS) is assigned to the Accuspec

board communications port instead of to the Dell COM1 port. We used a "break-out" box to

confirm that the Accuspec board port was available, and then connected a serial cable from it

to the DEC VT-100. This enabled real-time viewing of the sequentially displayed time and

data from each detector, in addition to the original spectrum display on the Accuspec host

terminal. As a footnote, we found other conflicts between the Accuspec program and the

Ethernet card, but these did not interfere with our application.

SUMMARY

The requirement for a file with easily sequenced time, summed counts per roi, and

real-time viewing of data from several input channels was achieved through only a few

modifications of the original AccuSpec program. The result was an ASCII file containing

time and data in a spreadsheet format. The output file produced by the modified program for

a 10-hour experiment producing 3,000 rows of data was only 40 kb versus the 15-megabyte

output of the original program for the same task. This format enables a variety of data

processing options, such as statistical analysis, curve-fitting, graphing, data archiving, and

transfer for use in other computer programs.

10

REFERENCES

1. Novotny, J.A., Mayers, D.L., Parsons, Y-F J., Survanshi, S.S., Weathersby, P.K., and
Homer, L.D., "Xenon kinetics in muscle are not explained by a model of parallel perfusion-
limited compartments." Journal of Applied Physiology, 68(3):876-890, 1990.

2. James, J.C., "A sample computer system for physiological data acquisition and analysis."
Computers in Biology and Medicine, 20(6):407-413, 1990.

3. Britcher, J.B., Reengineering software- a case study. IBM Systems Journal, 10(1): 10-20,
1990.

4. Ratzlaff, K.L., "Consideration of the need for custom data acquisition software." Abstracts
of Papers of the American Chemical Society, 12:20-23, 1987.

5. Arnold, R.S., "Software restructuring." Proceedings of the IEEE, 31:41-45, 1989.

6. Anderson, K.J., Reuse of software modules. American Telephone and Telegraph
Technical Journal, 13:45-47, 1988.

11

APPENDIX A Autosequence

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

NMRI.A counting jobstream

This jobstream assumes the following are present in the system:
1. 5 configurations named DET1, DET2, DET3, DET4, and DET5.
2. 5 ROI files named NMRI1, NMRI2, NMRI3, NMRI4 and NMRI5.

Prompt the operator for specific inputs

ask u, " enter output file name ","out.dat"
ask v, " enter value for bll'7'0"
ask w, " enter value for bl2","0"
ask x, " enter value for krspl","0"
ask y, " enter value for xespl","0"
ask z, " enter value for ratio","0"

ask b,"Enter real time (1:00)"," 1:00"
ask c,"How many cycles do you want to count ?","1"

acquire\context "DET1"
acquire\erase
acquire\preset\real b

" display\roi\purge
move\roi\restore "NMRI1.ROI"

acquire\context "DET2"
acquire\erase
acquire\preset\real b
display\roi\purge
move\roi\restore "NMRI2.ROI"

acquire\context "DET3"
acquire\erase
acquire\preset\real b
display\roi\purge
move\roi\restore "NMRI3.ROI"

acquire\context "DET4"
acquire\erase
acquire\preset\real b
display\roi\purge
move\roi\restore "NMRI4.ROI"

i

12

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

acquire\context "DET5"
acquire\erase
acquire\preset\real b
display\roi\purge
move\roi\restore "NMRI5.ROI"

let d="0" !file name counter
let e=c '.loop counter

ask f, "Press <ENTER> to begin.'V'ENTER"

:loop
I

display\roi\advance
!

acquire\context "DET1"
acquire\erase
acquire\on/off\on

I

acquire\context "DET2"
acquire\erase
acquire\on/off\on

I

acquire\context "DET3"
acquire\erase
acquire\on/off\on

!

acquire\context "DET4"
acquire\erase
acquire\on/off\on

! "'

acquire\context "DET5"
acquire\erase
acquire\on/off\on

wait\adc !wait until sample is done counting

acquire\context "DET1"
util\print\totals "detl.tot"

acquire\context "DET2"
util\print\totals "det2.tot"

13

L

87. .. acquire\context "DET3"
88. util\print\totals "det3.tot"
89. !
90. acquire\context "DET4"
91. util\print\totals "det4.tot"
92. !
93. acquire\context "DET5"
94. util\print\totals "det5.tot"
95. !
96. ine d üncrement file name counter
97. util\run "nuprint ~v ~w ~y ~u ~d"
98. !
99. dec e [decrement # of cycles
100. test\eq e,out [finished if last cycle
101. test\gt e,loop '.loop if more cycles to go
102. :out
103. ask f,"All cycles are counted, any key to continue","ENTER"
104. !
105. ! Counting is complete. Now ask if data should be erased from disk.
106. !
107. :alldun

14

I

APPENDIX B NUPRINT.C

1. /* program to consolidate detl.tot, det2.tot,... det4.tot into det.tot */

2. #include <stdio.h>
3. #include <string.h>
4. #include <dos.h>
5. #include <math.h>
6. #include <io.h>
7. #include <fcntl.h>
8. #include <bios.h>
9. #include <sys\types.h>

10. FILE *streaml,*stream2,*stream0, *stream3, *stream4, *stream5;
11. char line [80],outf[20];
12. char strl[10],str2[10],str3[10],colon;
13. int result;
14. struct dostime_t ptime;
15. long hour 1,minl,hour2, min2;
16. float etimell,etimel2,etime21,etime22,etime31,etime32;
17. float etime41,etime42,etime51,etime52;
18. float rll,rl2,r21,r22,r31,r32,r41,r42,r51,r52;
19. long count 11,count 12,count21, count22, count31, count32, count41, count42;
20. long count51, count52;
21. unsigned comstat;
22. float b 11 ,b 12,krspl,xespl,ratio;
23. int loop;

24. main(argc,argv)
25. int arge;
26. char *argv[];

27. { if (arge == 6)
28. {
29. sscanf (argv[l],"%f",&bl 1);
30. sscanf (argv[2],"%f',&bl2);
31. sscanf (argv[3],"%f',&krspl);
32. sscanf (argv[4],"%f',&xespl);
33. sscanf (argv[5],"%s",outf);
34. sscanf (argv[6],"%d",&loop);

35. }
36. eise
37. printf ("Incorrect number of arguments %d provided \nMUST BE 5\n",

15

38. arge - 1);

39. if((streaml = fopen ("detl.tot'V'r")) !=NULL)
40. {
41. result = fscanf(streaml,"%s %s %s %d %c %d",
42. strl,str2,str3,&hourl,&colon,&minl);
43. result = fscanf(streaml,"%s ",line);
44. result = fscanf(streaml,"%s ",line);
45. result = fscanf (stream l,"%s ",line);
46. result = fscanf (stream l,"%ld %f",&countl l,&etimel 1);
47. result = fscanf (stream l,"%s ",line);
48. result = fscanf (stream l,"%ld %f",&countl2,&etimel2);
49. fclose (streaml);
50. rll =etimel 1/60.0;
51. rl2 = etimel2/60.0;
52. }
53. eise
54. printf ("Problem opening detl.tot \n");

55. jf((stream2 = fopen ("det2.tot","r")) !=NULL)
56. {
57. result = fscanf(stream2,"%s %s %s %d %c %d",
58. strl ,str2,str3,&hour2,&colon,&min2);
59. result = fscanf(stream2,"%s ",line);
60. result = fscanf(stream2,"%s ",line);
61. result = fscanf(stream2,"%s ",line);
62. result = fscanf(stream2,"%ld %f",&count21,&etime21);
63. result = fscanf(stream2,"%s ",line);
64. result = fscanf(stream2,"%ld %f",&count22,&etime22);
65. fclose (stream2);
66. i21 = etime21 / 60.0;
67. r22 = etime22 / 60.0;
68. }
69. eise
70. printf ("Problem opening det2.tot \n");

71. if((stream3 = fopen ("det3.tot","r")) !=NULL)
72. {
73. result = fscanf(stream3,"%s %s %s %d %c %d",
74. str 1 ,str2,str3,&hour2,&colon,&min2);
75. result = fscanf(stream3,"%s ",line);
76. result = fscanf(stream3,"%s ",line);
77. result = fscanf(stream3,"%s ",line);
78. result = fscanf(stream3,"%ld %f',&count31,&etime31);

16

79. result = fscanf(stream3,"%s ",line);
80. result = fscanf(stream3,"%ld %f",&count32,&etime32);
81. fclose (stream3);
82. r31 =etime31 / 60.0;
83. r32 = etime32 / 60.0;
84. }
85. else
86. printf ("Problem opening det3.tot \n");

87. if((stream4 = fopen ("det4.tot","r")) !=NULL)
88. {
89. result = fscanf(stream4,"%s %s %s %d %c %d",
90. strl,str2,str3,&hour2,&colon,&min2);
91. result = fscanf(stream4,"%s ",line);
92. result = fscanf(stream4,"%s ",line);
93. result = fscanf(stream4,"%s ",line);
94. result = fscanf(stream4,"%ld %f",&count41,&etime41);
95. result = fscanf(stream4,"%s ",line);
96. result = fscanf(stream4,"%ld %f',&count42,&etime42);
97. fclose (stream4);
98. i41 = etime41 / 60.0;
99. r42 = etime42 / 60.0;
100. }
101. else
102. printf ("Problem opening det4.tot \n");

103. if((stream5 = fopen ("det5.tot","r")) !=NULL)
104. {
105. result = fscanf(stream5,"%s %s %s %d %c %d",
106. strl ,str2,str3,&houi2}l&n,&min2);
107. result = fscanf(stream5,"%s ",line);
108. result = fscanf(stream5,"%s ",line);
109. result = fscanf(stream5,"%s ",line);
110. result = fscanf(stream5,"%ld %f',&count51,&etime51);
111. result = fscanf(stream5,"%s ",line);
112. result = fscanf(stream5,"%ld %f",&count52,&etime52);
113. fclose (stream5);
114. r51 =etime51 / 60.0;
115. r52 = etime52 / 60.0;
116. }
117. else
118. printf ("Problem opening det5.tot \n");

17

119. _dos_gettime(&ptime);

120. krspl = (.472679 - (0.001307*((countl2-bl2)*.0001)));
121. ratio=l/(l-(krspl*xespl));

122. if((streamO = fopen (outf,"a+")) !=NULL)
123. {

124. fprintf (streamO,"%d, %u, %.0f., %.0f., %.0f., %.0f., %.0f., %.0f., %.0f., %.0f.,
%.0f., %.Of.,\n",

125. loop,((ptime.hour*3600)+(ptime.minute*60)+ptime.second),
126. countl 1/rl l,countl2/rl2,count21/r21,count22/r22, count31/r31,
127. count32/r32,count41/r41, count42/r42, count5l/r51, count52/r52);

128. fclose (streamO);
129. }

130. else
131. printf ("Problem opening output file \n");

132. if((streamO = fopen ("this.jnk","w")) !=NULL)
133. {
134. fprintf (streamO,"%d, %.0f. %.0f., %.0f. %.0f., %.0f. %.0f., %.0f. %.0f., %.0f. %.0f.,

%.0f. %.0f.,\n",
135. loop,
136. ((((countl 1/rl l)-bl l)-(krspl*((countl2/rl2)-bl2)))*ratio),
137. ((((countl 2/rl2)-bl2)-(xespl*((countl 1/rl l)-bl l)))*ratio),
138. countl 1/rl 1, countl2/rl 2,
139. count21/r21, count22/r22,
140. count31/r31, count32/r32,
141. count41/r41, count42/r42,
142. count51/r51, count52/r52);
143. fclose (streamO);
144. } ;

145. system ("copy this.jnk coml:");
146. }

18

Figure 1
AccuSpec Autosequence Code Summary with modifications in right margin

Autosequence Initialization
Name output file
Enter background, spillover, and ratio numbers
Enter count time and number of cycles to count

Get configuration for each detector
Erase old configuration/setup new configuration
Purge old ROI's
Install new ROI's

Initialize loop counter
Wait for user to initiate

Get ROI configuration for each detector
Erase old data from memory
Begin collecting data

Wait for collection cycle to end

Get data for each detector { UTIL.C modified to give ROI true counts
Print totals to disk using new menu function Ntotals { MENU.C modified to recognize
added command (Ntotals)

Increment loop counter
Run NUPRINT

Decrement loop count number
Test for end of loop number

1) Open ntotals files for each detector
2) Open output file for appending new data to old
3) Concatenate, print cycle number
4) Get DOS time and convert to seconds-from-midnight
5) Print current data to a temporary file and display on VT-100
6) Close all files

NO YES

Inform user of completion
Terminate on user command

19

